(U-Th)/He ages of Proterozoic-Paleozoic basement rocks from northern Chile (18-19° S) and implications on the Neogene uplift history of the Western Cordillera

Cargando...
Miniatura
Compartir en:
Autor Institucional:
Lugar de Edición:
Fuente o Serie:
Andean Geology
Año, Volumen y Número:
2022, Vol 49, No 3
Número de serie:
3
Páginas:
pp.313-326
Escala:
Región:
Fecha:
2022
Descripción física:
Resumen:
In the Western Cordillera of northern Chile, the Proterozoic-Paleozoic Belén Metamorphic Complex is covered by late Oligocene-early Miocene (25-18 Ma) rocks, and both units are involved in west-vergent contractional deformation, which results in exhumation. A Miocene age (18 to 6 Ma) for deformation has been previously constrained by stratigraphy and cross-cutting relationships. To understand the youngest exhumation event and reverse faulting, we obtained 21 (U-Th)/He ages from two samples of the metamorphic rocks and the associate inverse thermal modeling. Five zircon (U-Th)/He ages from one sample are 113 to 226 Ma, very scattered, while five zircon ages from the other, are 20 to 49 Ma. The high dispersion of zircon (U-Th)/He data prevents the geological interpretation of results. Apatite grains from both samples yielded 11 (U-Th)/He ages between 10.4 and 18.7 Ma, with 9 values from 12.0 to 15.5 Ma. A slight positive correlation between apatite single-grain dates and effective uranium for 4 crystals of one sample<br/>suggests relatively slow cooling. The T-t model including these 4 apatite ages shows continuous cooling from 15 to 0 Ma with a relatively more marked cooling period at 11-7 Ma. The middle-late Miocene thermal signal agrees with the geologic evolution of the region and would permit to date the last activity of the Chapiquiña-Belén reverse fault, which<br/>uplifted and exhumed the metamorphic rocks. This signal is relatively similar to that the eastern Altiplano, but differs considerably from that the forearc.
Editor:
Descripción:
URI:
https://repositorio.sernageomin.cl/handle/0104/24708